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We study the chaotic mixing in two periodic model flows, the ‘tendril-whorl’ flow 
and the ‘ Aref-blinking-vortex ’ flow, with the objective of supplying evidence for the 
primary mechanisms responsible. for mixing in two-dimensional deterministic flows. 
The analysis is baaed on tools of dynamical systems theory but it is clear that the 
mixing problem generates several questions of its own: low periodic points and 
horseshoes dominate the picture, since we want to achieve mixing quickly; Poincark 
sections, popular in dynamical systems analyses, might give misleading information 
with regard to dispersion at short times. Our analysis shows that both flows are able 
to stretch and fold material lines well below the lengthscale of the flows themselves. 
The inner workings of the two systems are revealed by studying the local and global 
bifurcations. Computations for the blinking-vortex system indicate the existence of 
an optimum period at which the average efficiency is maximized, whereas the 
intensity of segregation - a classical parameter in mixing studies - decays rapidly to 
an asymptotic value in the globally chaotic region. Even though our flows are not 
turbulent the results might have some implications for pointing to the limits of 
similar studies in actual turbulent flows (e.g. line stretching). 

1. Introduction 
It seems to be impossible to develop a comprehensive theory of the mixing of 

fluids ; complications stem from bothjlfluids andflows. The fluids may be rheologically 
complex, miscible, immiscible or partially miscible, reacting or not, so that obtaining 
the velocity field in many situations of practical interest seems to be impossible. As 
we shall see, even if the velocity field is known, theflow or motion of the fluid particles 
may easily be complex enough to resist detailed theoretical and computational 
analyses. 

Usually, the starting point of a mixing process is a mixture segregated on a large 
scale consisting of striations or large blobs. Mechanical mixing causes the striations 
and blobs to stretch by several orders of magnitude, which in the case of immiscible 
fluids break into smaller blobs and droplets, the stretching and breakup related in 
a complicated way to the velocity field. In  the case of miscible fluids, of course, 
molecular diffusion becomes the controlling prqcess once striations are reduced to 
small enough lengthscales. An analytical description of the velocity field in most such 
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systems is impossible, and in many cases even a computational analysis is beyond 
the scope of modern computers. The theoretical construction must start from the 
simple and evolve towards the complex. 

On defining mixing with pussive and active interfaces (Aref & Tryggvason 1984), 
however, the following conceptual simplification is possible. In the case of mixing 
with passive interfaces the motion is topological and the interfaces are simply 
material surfaces which do not affect the flow. Active interfaces, on the other hand, 
interact with the flow and modify it, as in the case of interfaces between immiscible 
fluids. It is then obvious that in constructing a general theoretical framework for 
mixing a minimum requirement is to describe mixing in terms of the stretching of 
passive interfaces and then to add, possibly at  small scales, the effect of active 
interfaces, diffusion, reaction, etc. (Ottino 1982). 

Clearly, if the velocity field is given our problem is one of kinematics. However, 
one of the biggest misconceptions in mixing is that once the velocity field is obtained, 
the problem is essentially solved. As we shall see, the essence of mixing lies in the 
$ow or the ‘motion ’ of the fluid particles (Ottino 1982), which in the case of nonlinear 
velocity fields can be extremely complicated. Very simple looking velocity fields can 
produce quite extraordinary behaviour. For simplicity, we consider here the case of 
two-dimensional area-preserving flows that are periodic in time. An additional, and 
important, reason is that there is a considerable amount of theoretical guidance for 
this case. 

A study of the basic building blocks of a flow that are responsible for chaotic 
advection occupies an important position in a theory of mixing; however, at the 
moment we cannot anticipate what flows will be capable of displaying such 
behaviour. The objective of this work is to provide evidence of the primary 
mechanisms responsible for mixing in two-dimensional deterministic flows. We first 
briefly define some of the terms we use (the reader is referred to appropriate sources 
for details), and then present the analysis of two complementary model flows, the 
‘tendril-whorl ’ flow, and the ‘Aref-blinking-vortex ’ flow. The tendril-whorl flow is 
a periodic sequence of strong and weak flows, and in some sense is a simplified local 
description of a complex flow. The motion of particles in this case is unbounded, and 
most of the mixing occurs in a region around the origin with particles entering and 
leaving the mixing zone through ‘conduits’ so that it may be regarded as a 
‘continuous’ mixing system. The blinking-vortex flow on the other hand is composed 
of a sequence of weak flows and has bounded particle trajectories. The mixing zone 
in this case is well defined and closed hence it may be regarded as a ‘batch’ mixing 
system. 

2. Mathematical background 

v are 
The equations describing the trajectory of a fluid particle for a given velocity field 

(1) k = u(x, t ) ,  

where, in general, the velocity field may be time dependent. A solution to the above 
equation exists a t  least locally, and is given by 

x =&(x,), (2a) 

where x denotes the position at time t of a particle initially at x,. In  continuum 
mechanics (Truesdell & Toupin 1960) (2a) is called the ‘motion’. In  the context of 
our future discussion we refer to it as the $ow. When flows are periodic in time, as 
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is the case with the model systems we analyse below, the motion may be expressed 
as a mapping 

x ‘ f W o )  =f”(xo), ( 2 b )  

where n is the number of cycles of flow, and T is the time period. In  this case, the 
trajectory of the particle is represented by a sequence of points rather than a 
continuous curve. 

That a system such as (1) is capable of chaotic behaviour was demonstrated by 
HBnon (1966) who studied the problem on a suggestion of V. I. Arnold, and for the 
case of two-dimensional flows by Aref (1984), who recognized that (l), restricted to 
isochoric flows, is a Hamiltonian system with one or two degrees of freedom. The 
qualitative theory of differential equations indicates that ‘ chaotic ’ behaviour in 
dynamical systems is the rule rather than the exception. Comprehensive treatment 
of the fundamentals of ‘ chaotic ’ dynamical systems may be found in the recent books 
by Lichtenberg & Lieberman (1982), and Guckenheimer & Holmes (1983), and in the 
excellent review article by Helleman (1980). The book by Lichtenberg & Lieberman 
primarily addresses Hamiltonian systems, and is especially useful. 

The key to the understanding of the complex behaviour of chaotic flows resides 
in the structure of periodic points, and the local and global bifurcations of the flow. 
A single transverse intersection between the stable and unstable manifolds of a 
hyperbolic periodic point is sufficient to produce chaotic behaviour, and can be 
explained in terms of the wild behaviour of the manifolds that results (Lichtenberg 
& Lieberman 1982, p. 170). A periodic point of period p of a mapping 

f: x+flx) 

is defined as x* =pyx*), 

and the periodic point is hyperbolic if the Jacobian of the mapping iterated p times 
evaluated at the periodic point, DfP(x*), has no eigenvalues of unit modulus, where 

The stable and unstable manifolds of a period-p hyperbolic periodic point are invariant 
sets defined as 

wSp(x*) = {x Ifnp(x)+x* 
$(x*) = {x pP(x)+x* 

as n+ oo}, 

as n+- a}, 

so that if a point belongs to a manifold all its forward and reverse images iterated 
p times also belong to the manifold. A transverse intersection between the stable and 
unstable manifold of a periodic point is referred to as a transverse hmnoclinic point. 
Transverse intersections between the manifolds of different periodic points are known 
as transverse heteroclinic points, and we refer to the wild behaviour of the manifolds 
that results as heteroclinic or homoclinic behaviour. In  the caae of regular flows, the 
manifolds join smoothly and none of the above behaviour occurs. 

The main impediments for mixing in two-dimensional flows are ‘KAM curves’ 
which are invariant curves formed by quasi-periodic regular trajectories and act as 
barriers to transport. The existence of such curves in the neighbourhood of an elliptic 
periodic point was established by the Kolmogorov-Arnold-Moser (KAM) Theorem 
(Guckenheimer & Holmes 1983, p. 219), their survival being related to the irrationality 
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of the rotation number (Guckenheimer & Holmes 1983, p. 295; Lichtenberg & 
Lieberman 1982, p. 159), which depends on the frequency of rotation of the 
trajectory around the periodic point. A periodic point is said to  be elliptic if the 
eigenvalues of the Jacobian evaluated at the periodic point are complex and of 
magnitude 1. Typically such curves abound in the neighbourhood of an elliptic 
periodic point when the nonlinear perturbation in the neighbourhood of the periodic 
point is small enough, forming an island of fluid which does not mix with the rest 
of the fluid, the size of which depends on the outermost surviving KAM curve. 

In  the following analysis, we study the local flow in the neighbourhood of periodic 
points and then consider the global flow in terms of interactions of the manifolds of 
the periodic points. For the blinking-vortex system we also calculate the Liapunov 
exponent, the average efficiency, and the intensity of segregation, all of which are 
useful in the quantitative evaluation of a mixing process. 

3. The tendril-whorl mapping 
The tendril-whorl flow (Rising 1986) is a simple periodic flow, each period being 

composed of a homogeneous extensional flow followed by a nonlinear rotational flow. 
It provides an insight into the local behaviour of more complex flows which, from 
a Lagrangian point of view, may be decomposed into an extensional and rotational 
component both varying with time. The simplicity of the system allows a reasonably 
detailed analysis of which we can illustrate the variety of behaviour that is possible, 
and somehow expected of more complex flows. 

The velocity field over a single period of the flow described above is given by 

v, = 0, 
V@ = - w ( r ) ,  ] Text < t T e x t + q o t ,  

where Text is the duration of time for which the extensional flow exists and T,, the 
time for which the rotational flow exists. The function w(r)  is a positive quantity and 
specifies the rate of rotation, which varies only in the radial direction. The above 
velocity field can easily be integrated over a single period to give the mappings 

fext: ( ~ , ~ ) + ( ~ / a , a y ) ,  Lot :  (r,8)+(r,8+A@, 

which describe the motion of a fluid particle over a single period (Text + Tot). In  the 
above equations we have put a = exp (ST,,,) and A8 = - o ( r )  q o t / r .  When o ( r )  is 
chosen appropriately, the mappings composed together deform material lines into 
‘tendrils’ and ‘whorls’ (see Berry et al. 1979) thus we refer to the mapping as the 
tendril-whorl (TW) mapping. In  what follows we take the rotation to be of the form 

A0 = - Br e-r, 

where B is a constant proportional to Tot. The flow defined above is unbounded, and 
far from the origin is essentially an extensional flow, the rotational flow decaying 
exponentially with T .  
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4. Local bifurcations of the tendril-whorl mapping 
The period-1 periodic points of the TW mapping are given in polar coordinates by 

8* = tan-' ( l /a) ,  
Br* exp(-r*) = tan-'{i(a-l/a)}+2xn (n = 0,1, ..., M ) ,  

where 

When M = 0, the equations reduce to 

8* = tan-' (l/a), r* exp (1 - r * )  = 1//3, 

where 

In this form we notice that the angular position of the periodic points depends only 
on a, and the radial position on p. It is easy to see that the origin is a periodic point 
of the flow for all parameter values ; in addition there may be two or four or more 
period-1 periodic points depending on the value of /3, as we show below. 

The function r e(l-r) is non-negative for all r and has a single maximum at r = 1 
with a maximum value of 1. Thus for p < 1 the equation for the radial position has 
no solution and there are no period-1 periodic points other than the origin. A t  /3 = 1 
two additional periodic points are born at r* = 1, and 6* = tan-' (l/a) and 
8* = tan-l (l/a) + x .  For /3 > 1 each of the above periodic points splits into two, one 
at r* > 1 and one at r* < 1, both paira maintaining their respective angular 
positions. The above scenario repeats itself each time 

In what follows, we consider /3 < 1 +4x so that M = 0. 

given by 
The characteristic equation for the eigenvalues of a two-dimensional mapping is 

h2-tr(Df)A+det(Df) = 0, 

where Dfis the Jacobien of the mapping. In  the case of area-preserving mappings 
det (Df) = 1 so that we obtain 

A', = f tr (Df) k { (!j tr (Df)) - 1 

For the periodic point at the origin we find 

tr (Df) = a+ l/a > 2, 

and for the remaining periodic points 

tr  (Df) = 2+g(a) (r*-1), 

g(a) = (a- l/a) tan-'{f(a- l/a)}. where 
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Putting G = tr (Df) - 2, the eigenvalues and thus the character of the periodic points 
can be specified in terms of G as follows: 

G >  0, lA l l  > 1 ,  lhzl < 1 hyperbolic, 
G = 0, A,,A,  = 1 parabolic, 
0 > G > -4, A,, A, complex, with IAJ,  lA21 = 1 
G = -4, A , , A , = - l  parabolic, 

-4 > G, lAll > 1 ,  lA2l < 1 hyperbolic. 

elliptic, 

(The residue of Greene (1979) is -p.) Based on the above analysis, we can now infer 
the bifurcations that take place as /3 is increased from 0 for a fixed value of a. 

When /3 is less than 1, there is only one periodic point at the origin that remains 
hyperbolic. At  B = 1 two period-1 periodic points are formed a t  r* = I as shown 
earlier. Both points are parabolic since G = 0 in this case. When /? is increased to 
values greater than 1,  each periodic point a t  r* splits into two; the two at a radial 
distance of r* > 1 are hyperbolic, while those at  r* < 1 are initially elliptic. Thus 
/? = 1, r* = 1 is a, bifurcation value at which a, ‘saddle-node’ bifurcation (Gucken- 
heimer & Holmes 1983, p. 146) takes place. In a saddle-node bifurcation for 
area-preserving systems, as the parameter is increased the flow goes from no periodic 
points to one parabolic periodic point to two periodic points, one hyperbolic and one 
elliptic. As /? is increased further, the inner periodic point, which is initially elliptic, 
moves closer to the origin and G becomes more negative. If g(a) > 4, for /? large 
enough G = - 4  and a second bifurcation takes place in which the elliptic point 
becomes parabolic and then hyperbolic with increasing /?. This bifurcation is known 
as a ‘flip ’ bifurcation or ‘ period-doubling ’ bifurcation (Guckenheimer & Holmes 
1983, p. 157), and in addition to the change in character of the period-1 periodic 
point, two elliptic period-2 periodic points are formed in the neighbourhood of the 
period-1 periodic point. The flip bifurcation is characterized by eigenvalues of value 
- 1.  

Assuming that a and /? are large enough that the period-2 points exist, the 
following relations hold : 

.tv:,e:) = (e,e:) ,  ~ r : , e 2 * )  = (r:,e;), 

where ( r f ,  0:) and ( r ; ,  0:) are the two period-:! periodic points formed near (r*, e*). By 
symmetry, we can easily obtain the results for the period3 periodic points near 
( r* ,  8*+n). The eigenvalues depend on tr (Df”) where Df” is the Jacobian of the 
mapping iterated twice. For period-2 points we have z1+z2+z1, or 

x1 =f”(x,) =Ax,), 

and thus the Jacobian evaluated at the periodic points can be written as 

where Df is the Jacobian of the mapping. 
For the TW map, on simplification we obtain 

t r  (DAx,) Dflx,)) = 2 + G, G, + 2(G, + G,) 
def 
= 2 + G ,  
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FIGURE 1 .  Radial position (r*) of period-1 and period-2 periodic points of the TW mapping 

versus /3. a = 10.0. 

where 
(20f-3~) ( ~ ~ - 1 )  (1-rf) (2e:-i1q(a4-1)(1-4 

a,(.? + 1) 
GI = > Q 2  = 

"I(";+ 1) 

and at = l/tanO,*, i = 1,2. A t  the birth of the period-2 periodic points 
rf = r: = ?-*,al = a2 = a so that CT, = G, = G, and 

G' = c2+4G. 

At the flip bifurcation G = -4, which implies that G' = 0 so that the period-2 points 
are parabolic at the point of their formation. For slightly larger values of /3 we find 
that G < 0 and period-2 periodic points become elliptic. As /3 is increased further, 
depending on the value of a, a second flip bifurcation may occur in which the period-2 
points become hyperbolic and two period-4 elliptic points are formed for each period-2 
point. At the bifurcation point G = -4 so that we obtain 

(Gl+2) (G,+2) = 0. 

In figure 1 we have plotted the radial position of period-1 and period-2 periodic 
points versus /3 for a fixed value of a. The character of the period-1 and period-2 
periodic points, which are initially elliptic, can be inferred from figure 2 where we 
have plotted G and G versus /3 for the case of figure 1. As /3 is increased the elliptic 
period-1 periodic point undergoes a flip bifurcation (0 < -4), and a pair of elliptic 
period-2 periodic points are formed which subsequently undergo a flip bifurcation. 
Further increase in /3 results in a reverse flip bifurcation in which the period-2 
hyperbolic points become elliptic and the period-4 points formed after the flip 
bifurcation coalesce with the period-2 points; this is followed by another flip 
bifurcation. 
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G, G’ 

1 .o 1.1 1.2 

B 
FIQURE 2. G and G (see text) for the period-1 periodic points at r* < 1 ,  and the corresponding 

period-2 periodic points versus f i  for the TW mapping. a = 10.0. 

The behaviour of the period-1 and period-2 elliptic points is summarized in figure 3 
where we have plotted flip-bifurcation values (i.e. the value of /l at which the elliptic 
periodic point becomes hyperbolic) versus a for the period-1 and period-2 elliptic 
points. Figure 3 ( b )  shows a magnified view of the region in which the behaviour 
described in figure 2 occurs. The dashed line in figure 3 corresponds to a = 10. As 
is apparent from figure 3, the local bifurcations of the TW mapping are quite complex 
and do not exhibit a Feigenbaum universal cascade of period-doubling bifurcations 
as has been found for quadratic two-dimensional area-preserving mappings (Helleman 
1980). 

The existence of low-order elliptic points as shown above and the KAM surfaces 
surrounding them are of major importance from the point of view of mixing. When 
most of the KAM surfaces survive, the flow in an island around the elliptic periodic 
point is mostly regular and isolated from the rest of the fluid so that the mixing is 
poor. The flip bifurcation results in the breakup of the islands into smaller ones, 
though more higher-period islands are formed at each period doubling. The size of 
such islands is limited by the manifolds of the hyperbolic points, which also increase 
in number. 

5. Global bifurcations of the tendril-whorl mapping 
The stable and unstable manifolds of the period-1 periodic points provide us with 

the broad features of the flow which we utilize to qualitatively analyse the ability 
of the flow to mix. The main features of interest are regions or large-scale homoclinic 
behaviour in which we expect good mixing, and intersections between the manifolds 
of the different regions which can be interpreted as gates for transport between two 
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a 

FIGURE 3. Flip-bifurcation values of /? (value at which elliptic point becomes hyperbolic versus a 
for period-1 (P-1) and period-2 (P-2) points. (b)  is a magnified view of box in (a). The dashed line 
corresponds to a = 10. 

homoclinic regiona. We calculate the position of the manifolds numerically by 
surrounding each hyperbolic periodic point by a circle of small radius made up of a 
large number of points and convecting them by the flow. The unstable manifolds are 
found by mapping the points forward and the stable manifold by mapping them in 
reverse. The result is a thin filament (a line to the resolution of the graphics output 
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t 

FIQURE 4. Schematic view of mixing zone. P, and Pi are the outer period-1 periodic points, and 
P, and Pi are the inner period-1 periodic points. Large arrows show the direction of transport 
through the conduits. The thickness of the conduits depends on the scale of heteroclinic behaviour 
near P, and Pi. 

device) which encases the manifold. Obviously, in the case of homoclinic behaviour, 
a larger portion of the infinitely long manifold is revealed with increasing numbers 
of mappings of the circle of points. 

The flow produced by the TW mapping is for most part regular and looks like an 
extensional flow. The complicated behaviour, and thus the mixing, is confined to a 
well-defined region around the periodic points shown schematically in figure 4. The 
TW mapping can thus be considered to be a continuous mixing system in which 
material enters through conduits around the stable manifolds and leaves via conduits 
around the unstable manifolds of the outer period-1 periodic points (figure 4). The 
thickness of the conduits and the flux into the mixing zone depend largely on the 
scale of homoclinic behaviour near the periodic point. Below we present the results 
of calculations for different values of a to illustrate the global bifurcations of the flow 
as p is increased from 1. 

Figure 5 shows the manifolds of the hyperbolic period-1 periodic points at r* > 1 
(PI and Pi) and at the origin (0) for two different values of p for a = 1.5. The 
manifolds seem to join smoothly in both cases and the flow looks regular to the 
resolution of the graphics output device. At  low values of p the manifolds of P, and 
Pi intersect themselves while those of 0 are outside as shown in figure 5(a ) .  At a 
higher value of /I, the manifolds of P, and Pi intersect each other and envelope those 
of 0 which self-intersect as shown in figure 5 ( b ) .  The bifurcation occurs at an 
intermediate value of /? when the manifolds of 0 overlap those of P, and Pi. The 
mixing is poor in this case as the conduits are infinitesimally small and the 
heteroclinic behaviour is also confined to a very small scale. 
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FIGURE 5. Stable and unstable manifolds of P, and Pi and 0 for a = 1.5; (a) before the bifurcation, 
/9 = 1.075; (b)  after the bifurcation, /9 = 1.099. 

Figure 6 shows the manifolds of P,, Pi, and 0 for a larger value of a (a = 5 )  and 
increasing values of /?. The bifurcation that takes place is similar to that described 
above where the manifolds of the origin overlap with those of P, and Pi as is 
increased and are finally enveloped by them as can be seen from figure S(u-c). The 
homoclinic and heteroclinic behaviour is clearly evident in this case. In  figure 6(c) 
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T 0.5 

1-0.5 

I 1-0.50 
FIGURE 6(a ,  a). For caption see facing page. 

though the manifolds of 0 are not shown to intersect with those of P, and P;, in fact 
they do as would be revealed if a larger portion of the manifolds were drawn. Based 
on the large-scale homoclinic behaviour we expect the conduits to be of large size 
resulting in flux into the mixing zone. Prior to the intersection between the manifolds 
of the origin and the outer periodic points (figure 6a), the mixing zone is divided into 
two compartments that are isolated from each other; the irihrsection of the manifolds 
opens up channels of transport from one compartment to the other. The KAM 
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FIQURE 6. Stable and unstable manifolds of P, and Pi and 0 for a = 6; (a) before the bifurcation, 
B = 1.066; (b ) ,  (c) after the bifurcation, B = 1.082 and 1.118 respeotively. (d) Wild behaviour of 
the manifolds reduces size of the island around the elliptic period-1 periodic point, B = 1.696. Note 
change in scale. 

surfaces around each elliptic point result in islands inside the mixing zone, the largest 
being those of the period-; periodic points (Pn and Ps). The size of the islands is 
determined by the KAM surface furthest from the elliptic point that still survives 
and thus depends on the scale of the homoclinic/heteroclinic behaviour of the 
surrounding manifolds. In  figure 6 (d) we show the manifolds at larger-value /3 when 
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H1 

H2 

H3 

FIQ~RE 7. Schematic view of the three types of period-1 horseshoes possible 
for the Tw mapping. 

the size of the islands around P, and Pi is greatly reduced by the large-scale 
heteroclinic behaviour. The mixing in this case is expected to be good. 

From the above analysis we see that when a is small the flow is almost regular and 
the mixing is poor for all 8. As a is increased the scale of homoclinic behaviour 
increases and for a large enough value of 8 there are intersections between the 
manifolds of the outer periodic points and those of the origin resulting in a single 
connected mixing zone. The mixing zone is not homogeneous, and is expected to 
contain islands of regular flow around each elliptic periodic point, the largest islands 
being around the period-1 periodic points. As shown above, the size of the islands 
decreases with increasing a and B. When a is large enough, the islands also breakup 
into smaller ones of higher period due to the flip bifurcation. 

A homoclinic intersection implies the existence of a horseshoe set (Smale-Birkhoff 
Homoclinic Theorem, Guckenheimer & Holmes 1983, p. 252) ; however, such horse- 
shoes may be of period higher than 1. Horseshoes of period-1, besides being easier 
to study, also result in the most rapid mixing. We show the existence of period-1 
horseshoes by the following construction. We choose a rectangle centred at the origin 
whose forward image intersected with itself results in ‘vertical ’ strips. When the sides 
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of the rectangle are chosen in the ratio a : 1 with the longer side parallel to the x-axis, 
if the forward image intersects properly with the rectangle, the inverse image also 
does so resulting in ‘horizontal’ strips. This is easily seen from the fact that the 
rectangle is mapped by the extensional flow to another rectangle whose sides are in 
the same ratio (a: l),  this time with the longer side parallel to the g-axis, so that the 
‘horizontal ’ strips are mapped into the ‘vertical ’ strips. 

In  the case of the TW mapping we find that 3 different types of period-1 horseshoes 
may be formed depending on the value of a for /3 large enough, as shown in figure 7. 
(Whet-eas the existence of any type of horseshoe is indicative of chaos the various 
types have different implications for fluid mixing.) In figure 8 (a) we show a horseshoe 
of type H1 for a value of a = 5. For a larger value of a (a = 10) we obtain overlapping 
horseshoes, one of type H1 (figure 8b) and one of type H2 (figure 8c) .  Finally at an 
even larger value of a(a = 25) we obtain a horseshoe of type H3 as shown in 
figure 8 ( d ) .  In all the above cases the conditions of horizontality and verticality 
required by Moser’s construction (Guckenheimer & Holmes 1983, p. 241) are easily 
satisfied thus implying the existence of an invariant Cantor set A of isolated points 
which remain inside the rectangle for all time. The set A is contained in the rectangles 
formed by the intersection of the vertical and horizontal strips and contains points 
that are periodic with arbitrarily long periods as well as points that exhibit bounded 
aperiodic motion. The most rapid mixing takes place in the neighbourhood of A ;  
however, the existence of higher-order horseshoes which overlap the period- 1 
horseshoes results in a larger mixing zone. An implication of practical significance 
of the above result is that good mixing occurs in the neighbourhood of the origin well 
below the lengthscale at which the velocity fields may be approximated to be linear. 

6. The Aref-blinking-vortex flow 
This flow is generated by two point vortices separated by a periodic distance that 

blink on and off periodically in an unbounded fluid. At any given time only one of 
the vortices is on so that the motion during each period is made up of two consecutive 
rotations about different centres. The flow was proposed as an idealized model of a 
stirred tank (Aref 1984). As was pointed out by Aref & Tryggvason (1984) the 
velocity field due to the vortex can be realized approximately by a circular cylinder 
spinning in a large pool of a viscous liquid. The flow also turns out to be qualitatively 
similar to a periodically operated cavity flow (Chien, Rising & Ottino 1986) which 
has been studied experimentally, and can be regarded aa a special case of a more 
general class of flows with non-constant speed on streamlines (Rising 1986). The 
distinguishing feature of the flow, however, is that it is composed of a sequence of 
‘weak’ flows, in which the lengths of material lines increctse linearly with time, and 
yet is able to mix well as we show below. Such bounded flows also have the property 
of an ‘optimum’ operating condition at  which the average stretching efficiency is 
maximized as we demonstrate for the BV flow. 

The velocity field due to a single point vortex at the origin is given by 

r 
v r = o ,  v - -  ’ - 2xr’ 

where r is the strength of the vortex. The above 
integrated over the time T during which the vortex 

velocity field can easily be 
exists to give the following 
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0 

1-2.0 

1-0.25 

FIQURE 8(u, b ) .  For caption see facing page. 

where A8 = rT/2xr2.  Taking the vortices to be at (-a, 0) and (a, 0) in a Cartesian 
co-ordinate system, the mapping in dimensionless form is given by 

fE: ( x , y ) - + ( f + ( x - f )  cosA8-y sinA8, ( z - f )  sinA8+y cosA8), 

where f is the position of the vortex, A8 = p/r2,  and 

r = ( (z-f)2+y2)k 
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FIQURE 8. Construction of period-1 horseshoes for the TW mapping. The forward image of the 
rectangle intersected with itself gives ‘vertical’ strips, and the inverse image of the rectangle 
intersected with itself gives ‘horizontal’ strips. The invariant set A is contained in the shaded 
regions which are the intersection of the vertical and horizontal strips. (a) For a = 5,/3 = 2.239, 
we obtain a horseshoe of type H1. For a = 10, /3 = 2.180, we obtain overlapping horseshoes of type 
H1 (a), and H2 (c). (d) For a = 25,/3 = 1.185, we obtain a horseshoe of type H3. 
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In  the above equations distances are made dimensionless with respect to a so that 
the vortices are at  = f 1, and the dimensionless flow strength p is defined as 

p = rT/27ca2. 

In the following analysis we assume that the vortex at = 1 is switched on first and 
that the rotation is counterclockwise (p > 0). 

The flow far from the vortices looks like a rotation about the origin and thus the 
motion of the fluid particles is bounded, in contrast to the TW mapping in which 
the flow is dominated by the extensional flow and particles are convected towards 
infinity. As shown by Aref (1984), at low flow strengths the motion appears to be 
mostly regular except in small regions around the vortices, and at  higher flow 
strengths, chaotic, so that the single parameter of the system, p, can be varied 
smoothly to go from a poor mixing system to a good mixing system. 

7. Local bifurcations of the blinking-vortex mapping 

is a period-1 periodic point then 
Since each period of the flow is made up of two consecutive rotations, if (z*,y*) 

f+&*,y*) = (x*, -y*) end f-,(x*, -y*) = (Z*,Y*), 

as can be seen from figure 9. Denoting the distances of the periodic point from the 
vortices as R, and R,, and the semi-angles subtended at the vortices by the line 
segment joining (x*,y*) and (x*, -y*) as 8, and 8, (see figure 9), the equations for 
the periodic points are given by 

where 

and 

R, cosO,+R, cose, = 2, R, sine, = R, sine,, 

Oi = +(AO(Rl)-2xn,) ( i  = 1,2) for y* > 0, 

8, = n-+(AO(R,)-27cn,) ( i  = 1 , 2 )  fory* < 0.  

In the above equations nf is the number of full rotations about the corresponding 
vortex and is given by 

There are multiple solutions to the above nonlinear equations for a given flow 
strength, and we visualize the position of all the period-1 periodic points by the 
following graphical construction. We put 

~ ~ ( 8 , )  = 1 -8 ,  cose,, yl(sl) = s, sine,, 

z,(s,) = 1 +s, cosO,, y2(s2) = s, sine,, 

where 0, = e(s,) as above, so that when x1 = z2 and y1 = y,, the equations for the 
periodic point are satisfied with S, = R, and s, = R,. In  figure 10 we plot the graphs 
of x, versus y, and xi versus - yr ( i  = 1,2) for different values of the flow strength. 
The points of intersection between the graphs are then the periodic points. As may 
be expected from the definition of B,, the graphs are discontinuous and we label each 
segment of the graph by n,, the number of rotations about the vortex. At low values 
ofp (figure lOa), there are a number of periodic points all of which lie above the z-axis, 
and are formed by the intersection of the segments n, = 0 with nj 2 0. As the flow 
strength is increased all but three of the periodic points disappear (figure lob), and 
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/ 

FIGURE 9. Location of a period-1 periodic point (z+, y*) and its image after a half-cycle of the flow 
(z*, -y*) relative to the vortices (+ ) for the BV mapping. R, and R, are the distances of both 
(z*,y*) and (z*, -y*) from the right and left vortices respectively. 28, and 28, are the angles 
subtended by AB at right and left vortices respectively. 

at high flow strengths (figure 1Oc) there are again a number of periodic points, some 
of which lie below the z-axis. 

The character of the period-1 points depend on tr (Df), where f is the mapping 
composed of the two rotations 

As before we put 
f = f- 1 .f+ 1. 

and on simplification obtain 

tr  (Df(z*,y*)) = 2+4 sin(8,+8,){(A8,A8,-1) sin(8,+8,)+(A~,+A8,) cos (8,+6,)} 
def 
= 2 + G ,  

where 8, and Ad, are as defined earlier. 
By considering the relative slopes of the lines in the graphical construction at the 

intersection points we can infer that each time two segments of the graphs (xt,yi) 
and (z$, -yr) are tangent to one another, a saddle-node bifurcation occurs in which 
the period point is initially parabolic, and on decreasing ,u splits into two period-1 
periodic points, one of which is hyperbolic, the other elliptic. Of the periodic points 
formed by the intersection of n, = 0, and n, > 0 and the z-axis, the one closer to the 
origin is hyperbolic, and the other elliptic. Of the periodic points formed at high flow 
strengths (figure lOc), the upper periodic points are hyperbolic and the lower ones 
elliptic. Further change in p may result in a flip bifurcation for the elliptic points 
if G becomes sufficiently negative (G < -4). 
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= O  
= 1  
= 2  

= O  
= I  
= 2  

1-2.0 

T 3.0 

n , = O  
n , =  1 
n, = 2 

n , = O  
n , =  1 
n,  = 2 

FIGURE 10. Graphical construction to obtain the location of all the period-1 periodic points of the 
BV mapping for different flow strengths p. The periodic points are at the intersection points of the 
segments of the graphs (q, fy l ) ,  labelled nl, with the segments of the graphs (z,, fy,), labelled 
n,. (a) p = 0.5; (b)  3.0; (c) 10.0. 
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n, = 0- 1 
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n, = 0 
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0 1 .o 2.0 3.0 4.0 5.0 

t 
FIQURE 11. 0 (see text for definition) for different period-1 periodic points versus the flow strength 
p for the BV mapping. The graph for each pair of periodic points is labelled by the segment n1 
of the graph (zl, yl) that intersects with segment n1 = 0 of graph (xs, y2) (see figure 10) to form the 
periodic points. The outer periodic points have 0 < 0, and the inner periodic points have (2 > 0. 
The dashed line corresponds to 0 = -4. The graphs are identical for the symmetric period-1 
periodic points in the left half-plane. 

In  figure 11 we plot the calculated value of G versus p for the periodic points 
formed by the intersection of the segment n2 = 0 with the segments n, = 0, n1 = 1, 
and n, = 2 for y* > 0. The graphs for the inner periodic points lie above the a-axis 
while those of the outer periodic points lie below the 0-axis, as expected from the 
above considerations. The dashed line in figure 11 corresponds to O = -4 at which 
the flip bifurcation takes place. 

8. Global bifurcations of the blinking-vortex mapping 
The Poincar6 sections obtained by Aref (1984) showed that at low values of p the 

flow seems to be regular except in small regions around each vortex. As p was 
increased the chaotic regions around the vortices increased in size, and a third chaotic 
region in the shape of a figure-of-eight became apparent. Finally, at a high enough 
value of p, the chaotic region around each vortex overlapped with the figure-of-eight 
region forming a single connected chaotic region. 

The above behaviour can be explained by studying the interactions of the 
manifolds of the period-1 periodic points formed by the intersections of the segments 
n1 = 0 and n, = 0 (figure 10). Though the outer periodic points are elliptic at the 
point of formation, they are hyperbolic for the range of p over which we carry out 
the calculations (figure 11). Figure 12 shows the stable and unstable manifolds of the 
periodic points specified above for a series of increasing flow strengths; the manifolds 
of the outer periodic point in the left half-plane are not drawn and may be inferred by 
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FIQURE 12. Stable and unstable manifolds of period-1 periodic points formed by the intersection 
of the segments n1 = 0 and n, = 0 of the BV mapping for different flow strengths p. (a) p = 0.1, 
(a) 0.3, and (c) 0.6. (Manifolds of the symmetric periodic point in the left half-plane are not drawn.) 

symmetry. For low flow strengths (figure 12a) the manifolds of the central periodic 
point seem to join smoothly, and the homoclinic behaviour occurs at a lengthscale 
below the resolution of the graphics device; the homoclinic behaviour of the 
manifolds of the outer periodic points, however, is clearly apparent in this case. At  
higher values of the flow strength (figure 12b), the homoclinic behaviour of the 
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FIGURE 13. Magnified view of the stable and unstable manifolds of period-1 periodic points formed by 
the intersection of the segmentsnl = 0 andm = 0 of the BV mapping for two different flow strengthsf4 
p = 0.5, (b) p = 0.38. Each manifold is a different colour: manifolds of the central periodic points are 
red-unstable, yellow-stable; manifolds of the outer periodic points are black-unstable, pink-stable. 
The green boundary is a KAM curve and an asterix denotes the position of a vortex. Manifolds do not 
appear continuous in (b) due to the large number of iterations. Note transverse intersection between 
manifolds of the outer and central periodic points in the encircled region in (b) (yellow and black). 
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manifolds of the central periodic point becomes evident, while that of the outer 
periodic points increases in scale. A t  large values of ,u (figure 12c), the manifolds 
overlap forming a single ‘globally chaotic ’ region. 

The global bifurcation occurs at an intermediate flow strength (p = 0.36) when the 
last of the KAM surfaces separating the figure-of-eight region from each chaotic 
region around each vortex is destroyed and the outer manifolds intersect with the 
central one. The above bifurcation is often referred to as the ‘transition to global 
chaos’ (Greene 1979). Figure 13 (plate 1) shows a magnified view of the manifolds 
at a flow strength close to the bifurcation value (figure 13b), and a t  a higher flow 
strength (figure 13a), each manifold being a different colour. In  figure 13(b), the 
manifolds do not appear as a continuous line owing to the large number of iterations. 
As a result, the intersections between the manifolds of the outer and central periodic 
points are only barely evident in this case (encircled region in figure 13b). 

A single heteroclinic intersection as above implies an infinite number of such 
intersections and the original KAM surface is infinitely perforated but does not 
disappear entirely. The intersections act as gates for transport between the two 
homoclinic regions, and the remnant of the last surviving KAM surface or ‘ cantorus ’ 
(MacKay, Meiss & Percival 1984) acts as a leaky barrier to transport from one region 
to the other for p close to the bifurcation value, as we show below. 

9. Stretching of material lines, Liapunov exponents and average efficiency 
Material lines stretch at an exponential rate on the average in the chaotic region, 

thus accurate computations of the length of a material line can be carried out for 
relatively few cycles of the flow. Also the rate of stretching is non-uniform and 
depends on the initial condition so that such calculations are useful mainly for 
qualitative considerations. A convenient measure for quantifying the local stretching 
of material lines on the average is the Liapunov exponent, defined as 

1 a(x,, r i r )  = lim - In IDf,(x,).rirl 

with respect to an initial position x, and orientation rir,  where Dft is the Jacobian 
of the mapping at time t .  (In the case of mappings t is replaced by n, the number 
of cycles.) Osledec (1968) has shown that for bounded, p-dimensional Hamiltonian 
flows, there exist p such exponents corresponding to a p-dimensional basis at xo for 
almost all xo. Bennetin et al. ( 1 9 8 0 ~ )  have proposed a method for calculating all the 
exponents taking into account the fact that the growth of small numerical errors 
results in the calculated value tending to the largest exponent for all initial 
conditions. 

The Liapunov exponent can be physically interpreted as the long-time average of 
the ‘specific stretching rate’ ( i / A )  as can be seen from the following formalism: 

t+m t 

1 
lim il i d t  = lim - lnA(x,, rir, t) ,  
t+cc t+m t 

where h(x,, rir,  t)  = IDft(x,)-rirl. Based on the above interpretation, we define a second 
related quantity, the average stretching efficiency, as 

= a(x,, r i r )  

(e(x,, r i r ) ) ,  = lim 
t+m 
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where the efficiency is defined as (Chella & Ottino 1985) 
def D : && 

e(x,,&,t)  = ~ 

(D : D): 

(D : D): 
i / h  =- 

Ottino 

and D is the symmetric part of the velocity-gradient tensor. As can be seen from the 
equation above, the efficiency is simply a normalized stretching rate, the normalizing 
factor proportional to the square root of the rate of viscous dissipation in the case of 
Newtonian fluids. For two-dimensional area-preserving flows it can be shown that 

the limits corresponding to a material element oriented along the direction of 
maximum stretching or maximum compression in a purely extensional flow. As 
shown by Chella & Ottino (1985), all linear flows with a velocity-gradient tensor 
whose eigenvalues are not purely imaginary, can be classified by their corresponding 
asymptotic efficiency. The average efficiency defined above classifies flows in the 
same sense, that is, two flows are considered to be identical if the average specific 
rate of stretching per rate of local energy dissipation is the same. Such a classification 
is useful from a practical viewpoint since the stretching and hence mixing is related 
to the energy supplied to the system. Thus the Liapunov exponent and the average 
efficiency together provide us with a description of the local stretching of material 
lines, the former specifying the average stretching rate, while the latter, the type of 
flow on the average. 

The length stretch A for mappings can be found analytically for each period as 

where xi =fix,-,) and 6, = Df(xthl) *&i-l/hi-l. Thus the largest Liapunov exponent 
can be computed iteratively using the above formulae to give 

i n  
1 -  

~ ( x , ,  &,) = lim - X lnh,. 

In  the case of the blinking-vortex flow, the magnitude of the rate of deformation 
tensor D is given by 

n - m  nT i-1 

(D :  D): = 4 2 - 7 ,  P 

which is constant over each half-cycle. Thus the average efficiency is calculated by 
a similar procedure as for the Liapunov exponent outlined above. 

The Liapunov exponent and average efficiency were calculated for large numbers 
of cycles of flow for the blinking-vortex system. Both quantities tend to positive limit 
values for points in the chaotic region, the limit values being almost independent of 
the initial location and orientation of the material element in the chaotic region. 
Positive Liapunov exponents imply that material lines stretch at an exponential rate 
on the average leading to good mixing. We caution, however, that a number of 
problems arising from the finite precision of the computation remain to be addressed 
rigorously in the calculation of long-time averages as was pointed out by Bennetin 
et al. (1980b). When the motion is sufficiently chaotic and the numerical precision 
sufficiently high the time averages are expected to be reliable (Bennetin et al. 1980b). 
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FIGURE 14. (a) Liapunov exponent CT, and (b )  average efficiency, ( e ) , ,  versus flow strength p for 
points in the chaotic region of the BV mapping calculated for NO00 cycles of the mapping, 
fi,, = (0, 1)  and various initial conditions. (+ )  X, = (0.9, 0); ( N ) x,, = (0.99, 0) ;  (0) xo = (0.99. 0) .  
D; ( x )  x, = (-0.99,0), D; ([I]) xo = (-0.99,O). D denotes double precision. 

Figure 14 shows the Liapunov exponent and average efficiency versus the flow 
strength calculated for 50000 cycles of the mapping for points initially in the chaotic 
region. The initial positions chosen in the calculations were close to one of the vortices 
so that prior to the transition to global chaos the particle is restricted to one of the 
two chaotic regions around each vortex. The behaviour of the Liapunov exponent 

15 F L P  172 
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(figure 14a) is quite complex, and experiences a sharp change near the transition to 
global chaos (p x 0.36). Calculations up to a value of p = 15 show that the Liapunov 
exponent continues to increase slowly with increasing flow strength for p > 5. The 
average efficiency, in contrast, has a single maximum of ( e ) ,  x 0.16 at p x 0.8, 
indicating the existence of an optimal operating condition a t  which the rate of 
stretching per unit rate of energy dissipated is the highest on the average. (The 
maximum value was incorrectly reported as 0.36 in Khakhar, Chella & Ottino 1984.) 
The average efficiency seems to level off to a value of ( e ) ,  x 0.07 beyond p = 3 and 
our calculations indicate that it remains almost constant at that value up to a flow 
strength p = 15. 

The maximum in the average efficiency is related to the T-’ (or p - l )  decay in 
efficiency for large Tin  each half-cycle of the BV flow, which is typical of weak flows 
(Chella & Ottino 1985), and results from the material element aligning along 
streamlines. In  the case of the BV flow the streamlines change at the end of the 
period, so that the material elements experience a relative reorientation. When p is 
small, relatively little stretching takes place prior to reorientation and on the average 
the efficiency takes on low values ; at large flow strengths the efficiency decays to low 
values and again the average efficiency is low. Between the limits there exists a flow 
strength at which the average efficiency is maximum, as was found in our 
calculations. 

The Liapunov exponents and average efficiency calculated above provide a 
description of the local mixing. In  the next section we study some aspects of the 
mixing on a global scale by considering the dispersion of particles a t  the lengthscale 
of the system. 

10. Macroscopic dispersion of tracer particles 
We use flow-visualization experiments to qualitatively assess the ability of the flow 

to disperse initially concentrated aggregates of tracer particles. We also calculate 
approximately the ‘intensity of segregation’, a statistical measure of the mixed state 
often used in the study of mixing (Danckwerts 1952)) for the numerical experiments 
described above. 

The dramatic contrast in mixing in the regular region to that in the chaotic region 
is shown in figure 15. A circular blob made up of a large number of points, and located 
at  a fixed position in the flow (figure 1 5 ~ ) )  is convected by the flow. A t  p = 0.8 the 
blob is outside the chaotic region, and figure 15(b) shows the deformed blob after 30 
cycles of the flow. The mixing in this case is poor and lengths increase linearly with 
the number of iterations resulting in a relatively small deformation of the blob. At 
a higher flow strength (p = 1 .O) the chaotic region is larger so that the blob is initially 
inside the chaotic region and efficient dispersion of particles results, as can be seen 
from figure 15(c) which shows the blob after 24 cycles of the flow. In this case the 
blob does not appear continuous owing to the large amount of stretching, and 
relatively few points (9500) used in the visualization. To see the intricate striated 
structure formed on mixing a very large number of points would be required. The 
total time of mixing is the same in both cases, timk being proportional to p N  where 
N is the number of cycles. 

Evidence for the existence of cantori is presented in figure 16 in which circular 
blobs of particles initially in one of chaotic regions around each vortex (figures 16a 
and c) are prevented from mixing uniformly over the chaotic region, presumably 
by cantori, when the flow strength is not much larger than the bifurcation value. 
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FIGURE 15. Mixing in the regular and chaotic regions of the BV mapping. (a )  Initial condition; (b)  
and (c) mixed state. ( b )  Blob after 30 cycles of flow with p = 0.8, and (c) blob after 24 cycles of 
flow with p = 1.0. Note that total time of mixing p N  is the same in both cases. 

15-2 
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Figure 16 (b ,  d ) ,  which shows the blobs after 25 cycles of flow, support our earlier claim 
that there exist two cantori which separate the figure-of-eight region from the chaotic 
regions around each vortex. In  both cases we see that the dispersion of the particles 
in the chaotic region in which the blob was initially located is good; relatively few 
particles travel into the figure-of-eight region being obstructed by a cantorus, and 
almost none of the particles travel from the chaotic region around one vortex into 
the chaotic region around the other having to pass through two cantori. Thus the 
presence of cantori may prevent uniform mixing even ater the transition to global 
chaos. At  large enough flow strengths, however, the cantori do not significantly 
hinder mixing as is evident from figure 15(c). 

The state of mixedness in the above numerical experiments may be quantified in 
some sense by the ‘intensity of segregation’ (Danckwerts 1952) defined as 

where C is the local concentration and ( . ) indicates a volume average. (The intensity 
of segregation is usually defined as a ratio between the standard deviation of the 
concentration at  a given state to that a t  an initial state.) In the case of an actual 
dye experiment, the blob would remain connected for all time forming a striated 
structure, so that the intensity of segregation may be considered to be some measure 
of the distribution of striation thickness. We calculate the intensity of segregation 
approximately by imposing a grid of squares of side S on the chaotic region, and 
defining the concentration to be the number of particles per square. For a given flow 
strength, grid size 6, initial size and location of the blob we obtain the intensity of 
segregation for increasing numbers of cycles of flow. Our calculations indicate that 
in most cases a rapid decrease in intensity of segregation with time takes place; it 
is possible, however, for the particles to be aggregated by the flow (demixed) a t  short 
times. Graphs of the intensity of segregation versus the total time @ N )  for a 
particular set of initial conditions and different values of p are shown in figure 17. 
For p = 0.5 there is initially a rapid decrease in the intensity of segregation followed 
by a much slower decrease to its asymptotic value. Recall that in this case cantori 
pose leaky barriers to transport (figure 16) so that in the first stage particles are 
quickly dispersed only in the chaotic region around one of the vortices bounded by 
a cantorus, resulting initially in a rapid decrease in the intensity of segregation. In  
the second stage, transport through the cantori controls the rate of mixing, and the 
intensity of segregation decreases slowly as more particles leak through the cantori. 
A t  higher flow strengths, the cantori do not obstruct the mixing significantly, and 
there is a rapid decrease in the intensity of segregation to an asymptotic value, the 
decrease being most rapid for p = 1.0. 

The above analysis provides a description of the mixing in the Aref-blinking-vortex 
system, and thus some qualitative insights into similar chaotic mixing systems which 
are bounded, periodic and composed of weak flows. Some examples of such flows are 
a periodically operated journal-bearing flow (Aref & Balachandar 1985), a periodically 
operated cavity flow (Chien et al. 1986), and the flow in a KenicsB static mixer 
(Khakhar 1986). Though the structure of the periodic points and their bifurcations 
would depend on the details of the flow, the existence of positive Liapunov 
exponents, and a maximum average efficiency are expected to be common to all such 
systems. 
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FIGURE 17. Intensity of segregation I versus total time of mixing pLN for different flow strengths 

p calculated for a square blob of side 0.01 initially centred at (0.99,O). Grid size 6 = 0.12. 

1 1. Conclusions 
We have presented an analysis of two kinematically defined flows governed by 

external parameters - the extensional and the rotational strengths in the TW 
mapping, and the blinking time for the BV mapping. The study was motivated by 
our need to understand and anticipate the occurrence of chaos-and hence good 
mixing - in fluid flows. Even though there are many other simulations and analyses 
that might enhance our understanding of the operation of such systems, it is safe to 
say that not all aspects of the analyses, such as those usually carried out in the context 
of dynamical systems, will be of importance from a fluid mixing view point. Of the 
many unsolved mathematical questions, the size of the unmixed islands seems to be 
the most important; of the quantities computed in this paper, the length stretch 
(Liapunov exponent) and the average efficiency are the most useful from a practical 
viewpoint : the length stretch and area stretch in three-dimensional flows can be 
related to the intermaterial area which is useful for the study of mechanical mixing 
(Ottino & Chella 1983) and reactive mixing (Ottino 1982). 

One of the main differences between two- and three-dimensional periodic flows that 
are chaotic is that because of the additional degree of freedom in the latter case, if 
KAM surfaces exist they do not act as barriers to transport owing to the phenomenon 
of ‘Arnold diffusion’ (Lieberman & Tennyson 1982). The transport in this case, 
however, is exponentially slow (Arnold 1983). In  addition, in the case of three- 
dimensional flows, there is a possibility of obtaining higher flow efficiencies on the 
average, the maximum possible efficiency for this case being 

emax = d ( 2 / 3 ) 3  
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compared to  1 / (  1/2) for two-dimensional flows. I n  the case of three-dimensional 
velocity fields that are themselves chaotic, such as turbulent flows, the situation is 
more complex. Though not much can be said about the structure of the motion in 
such flows, it is well known that lengths increase exponentially and the motion of 
particles is chaotic. In  fact, considering that most velocity fields of practical interest 
for mixing applications are three-dimensional and unsteady, and the relative 
abundance of chaotic systems as compared to regular systems, we expect most 
mixing flows to  be chaotic, and much remains to  be done to  understand mixing in 
such flows. For example, future studies might focus on the dynamics of flows specified 
by an internal parameter, perhaps the Reynolds number, in which changes in the 
parameter result in changes in the flow kinematics and thus the mixing. 
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